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Abstract

In this work, we present an optimized implementation of the GPT-2 (127M) model,
developed under the EigenCore research initiative. Our approach focuses on reduc-
ing computational time and resource requirements while maintaining competitive
performance. The resulting model, named Tlama (124M), serves as the foun-
dation for ongoing research into scalable and efficient language models. This
paper details the technical improvements, including architectural adjustments and
training optimizations, and discusses their impact on both inference speed and
resource utilization. Our findings demonstrate the feasibility of deploying smaller,
more efficient models without sacrificing performance, paving the way for future
advancements in the field of natural language processing.

1 Introduction

This article marks the beginning of EigenCore’s journey into the research and development of
Artificial General Intelligence (AGI), with the goal of contributing positively to humanity’s progress.
We are committed to ensuring reliability, ethical use, and minimizing the environmental impact
associated with training and deploying artificial intelligence systems. To this end, we have decided to
start with a small-scale model, which we call Tlama (124M). This model represents the first step in a
series of planned advancements.

In recent years, the development of artificial intelligence has become increasingly expensive and
unsustainable. Companies such as OpenAI, Anthropic, and others have invested millions of dollars
in training massive language models (2). These models are capable of "reasoning" and analyzing
their own responses through techniques such as Supervised Fine-Tuning (SFT) and Reinforcement
Learning, endowing them with remarkable understanding and capabilities.

Recently, DeepSeek introduced a novel approach to developing Large Language Models (LLMs)
with a focus on reasoning and reduced computational costs. Their work emphasizes scalable model
development and aligns with our motivation to build Tlama (124M) from scratch. By adhering to the
scaling laws proposed in their research (5), we aim to create efficient and sustainable models that
pave the way for future advancements in the field.

2 Pre-Training

In this section, we present the dataset used for pre-training Tlama (124M), highlighting its composi-
tion, and relevance to the model’s performance.
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2.1 Data

For the initial pre-training phase of Tlama (124M), we utilized the edu_fineweb10B dataset, a
high-quality, education-focused subset of the FineWeb corpus. This dataset contains 10 billion
tokens of carefully curated text, specifically filtered to emphasize educational content, making it
particularly suitable for training models intended for reasoning and knowledge-intensive tasks. The
edu_fineweb10B dataset is derived from web-crawled data but undergoes rigorous preprocessing to
remove duplicates, low-quality content, and irrelevant text, ensuring a clean and efficient dataset.

The choice of edu_fineweb10B aligns with our goal of optimizing computational efficiency while
maintaining competitive performance. By leveraging a curated dataset with a strong educational
focus, we ensure that Tlama (124M) is exposed to diverse and meaningful linguistic patterns, as
well as domain-specific knowledge, during pre-training. This approach not only reduces the risk
of training on noisy or redundant data but also lays a strong foundation for downstream tasks that
require reasoning and comprehension.

3 Architecture

The architecture of Tlama (124M) is based on GPT-2 (124M) by OpenAI (3), maintaining the same
structure and hyperparameters to ensure a solid foundation for comparison and further development.
This decision allows us to leverage well-established practices while focusing on optimizations and
scalability.

Table 1: Tlama (124M) Architecture

Params nlayers dmodel nheads nk,v_heads
Context
Length

Sequence
Batch Size

Learning
Rate Tokens

124M 12 768 12 12 1024 64 6e-4 10B

As this is our first model, and it is entirely based on GPT-2, we followed most of its design choices,
including the learning rate and architectural hyperparameters. However, we adjusted the number of
tokens used during pre-training to better align with our computational constraints and research goals.
This approach provides a reliable baseline for comparison, enabling us to evaluate the effectiveness
of future modifications and ensure we are on the right track.

By adhering to GPT-2’s architecture, we aim to establish a strong foundation for Tlama (124M),
facilitating a clear understanding of its performance and guiding our efforts toward more efficient and
scalable models in subsequent iterations.

4 Hyperparameters

The weight initialization scheme for Tlama (124M) is based on the approach used in GPT-2 (3).
While OpenAI was not explicitly detailed about this in their papers presenting GPT-2 and GPT-3,
their source code reveals that the weights were initialized with a normal distribution using a standard
deviation of 0.02, and biases were initialized to 0. This initialization strategy is consistent with the
scale of the model and has been empirically shown to work well for transformer-based architectures.

In Tlama (124M), we adopted a similar approach:

• Linear Layers: Weights are initialized using a normal distribution with a mean of 0.0 and
a standard deviation of 0.02. If the layer has a TLAMA_SCALE_INIT attribute, the standard
deviation is further scaled by (2 · n_layer)−0.5, where n_layer is the number of layers in
the model. This scaling helps stabilize training in deeper networks. Biases, if present, are
initialized to 0.

• Embedding Layers: Weights are also initialized using a normal distribution with a mean of
0.0 and a standard deviation of 0.02.

This initialization scheme ensures that the model starts with small, random values that are well-suited
for the scale of Tlama (124M), promoting stable and efficient training.
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The training process of Tlama (124M) employs a carefully designed learning rate schedule to ensure
stable and efficient convergence. The schedule consists of three phases:

• Warmup Phase: During the initial steps, the learning rate increases linearly from 0 to the
maximum learning rate (6e-4). This warmup phase helps mitigate instability at the beginning
of training, allowing the model to gradually adapt to the data.

• Cosine Decay Phase: After the warmup phase, the learning rate follows a cosine decay
schedule (6), gradually decreasing from the maximum learning rate to a minimum learning
rate (10% of the maximum). This approach balances exploration and fine-tuning, ensuring
that the model converges smoothly without overshooting optimal parameters.

• Minimum Learning Rate Phase: Once the maximum number of steps is reached, the
learning rate stabilizes at the minimum value, allowing the model to fine-tune its parameters
without significant updates.

The optimizer used for training is AdamW (? ), which combines the benefits of adaptive learning
rates with weight decay regularization. Weight decay is set to 0.1, providing a balance between
preventing overfitting and maintaining model performance. The learning rate is initialized to 6e-4, a
value chosen based on empirical evidence and prior work with transformer-based models like GPT-2.

This combination of a dynamic learning rate schedule and a robust optimizer ensures that Tlama
(124M) can effectively learn from the training data while maintaining stability throughout the training
process.

5 Infrastructures

The training of Tlama (124M) was conducted on a high-performance computing cluster equipped
with 8 NVIDIA A100 GPUs, each with 80 GB of VRAM. This setup allowed for efficient parallel
processing and handling of large batch sizes, significantly reducing training time.

However, to make the model accessible for researchers and developers with limited hardware
resources, we also implemented strategies to train Tlama (124M) on a single GPU. By reducing the
batch size to 8 and employing gradient accumulation techniques, the model can be trained on a
single GPU with as little as 8 GB of VRAM, such as an NVIDIA RTX 4060. While this approach
increases the computational time, it does not compromise the quality of the model, making Tlama
(124M) a versatile and scalable solution for a wide range of hardware configurations.

6 Optimization Techniques for Training Efficiency

To ensure that Tlama (124M) is both computationally efficient and scalable, we implemented a variety
of optimization techniques across the model architecture and training pipeline. These optimizations
not only reduce training time and resource requirements but also maintain or even improve model
performance. Below, we outline the key strategies employed:

6.1 Parameter Sharing

One effective strategy to reduce the number of parameters while maintaining model expressiveness is
weight sharing. We adopted this approach by sharing weights between the token embedding layer
(wte) and the language model head (lm_head) (3). This reduces memory usage while maintaining
the same expressive power. Additionally, it introduces an implicit regularization effect, which can
improve generalization. By tying the embedding and output layers, we also ensure consistency in
token representations throughout the model.

6.2 Flash Attention

Self-attention is a major computational bottleneck in transformer models. To mitigate this, we
integrated Flash Attention, a memory-efficient and highly optimized implementation (4). By
optimizing memory access patterns and reducing redundant reads/writes, Flash Attention significantly
reduces computational overhead. This method is particularly beneficial for handling longer sequences,
as it improves memory efficiency and execution speed without sacrificing model quality.
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6.3 Mixed Precision Training

We leveraged mixed precision training with bfloat16 and float16 to exploit the full computational
power of modern GPUs (7). Using lower precision speeds up matrix operations while reducing
memory consumption, allowing us to use larger batch sizes. Additionally, automatic loss scaling
prevents numerical instability issues, ensuring robust training.

6.4 Gradient Clipping

To stabilize training and prevent exploding gradients, we applied gradient clipping with a predefined
threshold (1). This technique ensures that gradient values remain within a reasonable range, preventing
divergence and promoting smoother optimization. It is particularly useful in deep architectures where
large gradient magnitudes can destabilize learning.

6.5 Distributed Data Parallel (DDP)

For large-scale training, we employed Distributed Data Parallel (DDP) (7), which allows computa-
tions to be distributed across multiple GPUs. This approach enables parallel training, significantly
reducing overall training time. By overlapping computation with communication, DDP maximizes
hardware utilization, ensuring efficient scalability even in multi-node environments.

6.6 Ugly Numbers and Padding

Optimizing tensor dimensions can significantly enhance computational efficiency. We adjusted the
vocabulary size to hardware-friendly values, such as 50,304 instead of 50,257, to align with GPU
memory architectures (6). This optimization ensures more efficient tensor operations, minimizes
padding overhead, and improves overall GPU utilization.

6.7 Learning Rate Scheduling

To stabilize training and ensure better convergence, we implemented a learning rate schedule com-
bining warmup and cosine decay (6). The warmup phase gradually increases the learning rate to
prevent instability at the beginning of training. After this phase, the learning rate follows a smooth
decay, refining convergence and preventing drastic parameter updates.

6.8 Gradient Accumulation

To handle hardware with limited memory, we employed gradient accumulation (7), allowing for
effective batch sizes larger than what can fit in a single GPU pass. By accumulating gradients over
multiple iterations before updating model parameters, we simulate the benefits of larger batch sizes
without increasing memory consumption. This technique ensures stable updates and reduces the need
for frequent gradient synchronization.

6.9 Torch.compile and Kernel Fusion

To further enhance execution speed, we utilized torch.compile (7), which optimizes computational
graphs and reduces Python overhead. Kernel fusion merges multiple operations into a single step,
minimizing redundant memory access and improving execution efficiency. These optimizations lead
to significant speedups in both training and inference, making Tlama (124M) more efficient and
accessible to a wider range of users.

These optimizations collectively enable Tlama (124M) to achieve state-of-the-art performance while
remaining accessible to researchers and developers with varying levels of computational resources.

7 Preliminary Results

As a first step in developing our language model, we focused on monitoring the loss function during
training and validation. Additionally, since our model has not yet been fine-tuned for chat-based
interactions using Supervised Fine-Tuning (SFT), we evaluated its performance on the HellaSwag
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benchmark. This benchmark assesses a model’s ability to correctly complete a given sentence, making
it a useful metric for evaluating natural language understanding.

Figure 1 presents both of these key metrics.

Figure 1: Training loss and validation performance on the HellaSwag benchmark. The left plot shows
the training and validation loss over training steps, while the right plot compares accuracy to existing
models.

8 Analysis

From the left plot in Figure 1, we observe that the loss function is steadily decreasing at a promising
rate, suggesting that our implementation is functioning correctly and that the model is improving
as expected. Interestingly, we surpass the validation loss of the GPT-2 (124M) baseline, which is
a strong indication of the effectiveness of our training approach. One notable observation is the
periodic spike in training loss, which we suspect is due to insufficient data shuffling, causing periodic
variations in the optimization process.

On the right plot, we see that Tlama (124M) (124M) exceeds GPT-2 (124M) on the HellaSwag
benchmark, demonstrating stronger sentence completion capabilities. This result aligns with findings
from the DeepSeek team (5), who noted that GPT-2 was trained on the WebText dataset, a highly
diverse corpus. We hypothesize that this diversity may contribute to GPT-2’s relatively lower
performance on this specific task, emphasizing the importance of dataset selection in model training.

Additionally, although Tlama (124M) has not yet reached GPT-3 (124M) performance, the trend in
our results suggests that further training steps could narrow this gap. With additional fine-tuning
and training, we anticipate that Tlama (124M) will continue improving and potentially reach GPT-3
performance levels in specific benchmarks.

9 Future Work

This research represents just the beginning of our exploration into language model development. The
experience gained in implementing this model has been invaluable, equipping us with the necessary
insights to build scalable, cost-efficient, and highly performant models.

Moving forward, we plan to develop an enhanced version of Tlama (124M) that strictly adheres to
the Scaling Laws proposed in (6). Additionally, we aim to conduct a more extensive evaluation of
the model, analyzing its capabilities across multiple benchmarks to understand the full potential of
compact language models. Further optimizations in data preprocessing, architectural refinements,
and training strategies will be explored to push Tlama’s performance closer to larger-scale models.

10 Conclusion

In this work, we introduced Tlama (124M), a compact yet efficient language model. Through
rigorous experimentation, we demonstrated its ability to outperform GPT-2 (124M) on the HellaSwag
benchmark while maintaining a stable and effective training process. Our findings highlight the
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importance of dataset selection, model architecture, and training techniques in achieving competitive
performance with smaller models.

Despite its promising results, Tlama (124M) represents only the beginning of our exploration into
the potential of smaller, highly optimized models. Future efforts will focus on scaling strategies,
improved data augmentation techniques, and advanced fine-tuning methodologies to push the
boundaries of what these models can achieve. By continuing to refine our approach, we aim to
uncover the full potential of models like Tlama (124M), demonstrating that they can not only match
but also exceed expectations in terms of efficiency and performance. Our goal is to explore how far
these models can go, challenging the notion that larger models are always superior.
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